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SELF-SIMILAR MOTION OF FLUID UNDER THE ACTION OF SURFACE TENSION

F. L. Chernous'ko

ABSTRACT
BBP0O
Investigation of the behavior of a weightless
fluid with a free surface set in motion from a state
of rest by the force of surface tension. A particular

case of the problem of self-similarity is formulated

and solved.

1. Let us examine the plane flow of an ideal, incompressible, /54%
weightless liquid having the density p. Let X,y be the rectangular
Cartesian coordinates in the flow plane. At the moment of time t = O,
the liquid is at rest and occupies the wedge (Figure 1) with the angle
of opening o, which is bounded by the free surface y = 0 and the solid
wall y =-xtga. The coefficient of surface tension ¢ at the free boundary
and the contact angle <y at the boundary between the liquid and the wall
(Figure 1) are assumed to be constant. If y % a, then for t > 0 the
liquid is set in motion, and the flow will have a potential. This type
of flow can develop when the surface tension is suddenly '"switched on",

and also in the following case, for example. For t < 0, let the liquid

Note: Numbers in the margin indicate pagination in the original
foreign text.




be at rest in the field of gravity. The free surface thus differs signifi-
cantly from the plane y = O only in the region close to the wall, where a
meniscus is formed (Ref. 1). The greater the ratio between the force of
gravity and the force of surface tension, the smaller will be the meniscus.
At the moment t = 0, let the force of gravity instantaneously become zero.
Then a flow develops for t > 0, which will be close to the self-similar
flow being examined here, if the dimensions of the initial meniscus are
small as compared with the scale of the process in which we are interested
(i.e., if the force of gravity is sufficiently large for t < 0).

The velocity potential ¢0(x,y,t) satisfies the Laplace equation in
the region of flow and the condition of rest at the wall (the indices

below designate the partial derivatives)

: : o lo R
(pxx°+ (PUy‘):" 0’ ‘Py +(Px tga = Oxf‘!c:r yr—fl——z‘tga (l.l)

The pressure p in the liquid having the free surface y = £0(x,t) is
connected by the following relationship with the constant pressure pg out-

side of the liquid (Ref. 1):

‘p=pe— oK, K= k(14 foy (1.2)

K represents the curvature of the free surface. The upper sign in
the formula (1.2), and also in (1.7), must be taken when the liquid lies
below the free surface (just as in Figure 1), and the lower sign - in the
opposite case.

Taking into account the formula for p, we can write the Cauchy-Lagrange /55

integral for points on the free surface, as well as the kinematic condition



° ‘/ (Vo°)? —oK/p =0, | [+ 19— 9= 0"gor y=1=.0 (1.3)
At the point at which the free boundary contacts the wall, we have

1° (=, By =1tg(r —a) for y=f(a, t)=-—ztga (1.4)

The initial conditionsand conditions at infinity have the following

form
9° (z, ¥, 0) = f° (z, O)T- ®% /=0 ffor 2, y—>oo! (1.5)

The problem (1.,1) - (1.5) of determining the function o0, £f0 will be
self-similar: it contains two dimensional parameters o,p having the dimen-
sions [0] = MT™2, [p] = ML™3. Let us introduce the dimensionless, indepen-

dent variables £,n and the dimensionless desired functions ¢,f

x=(£‘l)'/'§,y~'%(§£)‘/-n, q)o___<ct>/z (& ), /o ( ) (g) (1.6)

P P

Changing to new variables in equations (1.1) - (1.5), according to

(1.6), we obtain the boundary value problem for the function ¢,f

(pEE+q)nn_-_O" (Pﬂ——q)' tga = 0 for. :Y]—‘.‘——q‘,tga
Us 9. — s (o +m@,) 1+ Ve (V) F [ (L+f)2)"/’=jo
2/3(f“§f)+f(PE—'(P = (0 for ’f]—f(E,) ; ‘g
‘ f=tg(r —a) fOrf(E)zc—&tga , | :
¢ L0 f(E)-—0 jyforgtn_,?o ' c |

(1.7)

The dashed line designates the derivative with respect to §. A non-
linear boundary value problem (1.7) is formulated for the region (Figure 1)
bounded by the line n = -f£tgo and the unknown curve n = f(&). Self-similar,

axi-~-symmetric flow can be examined in a similar manner.



2. Problem (1.7) can be linearized, if the angles y and o are simi-~
lar to each other, i.e., y-a = e,]el « 1. For purposes of linearizationm,
we assume’ that the functions ¢,f and their derivatives are of a small

order €, and the conditions on the line n = 0 are removed from the un-

known boundary n = f(&).

We must select the upper of the two signs in (1.7), since for Iel «< 1
the disturbances of the free boundary are small, and the liquid lies below
the free surface.

For purposes of definition, let us set o = !/,m. Then the linearized
boundary value problem can be reduced to determining the function ¢(g,n),
which is harmonic in the quadrant £>0,n<0, as well as the function £(£)

according to the condition

op 2 = O ¥ (= §) =0, 4 D for a0
S T im0 forg—o, | F (O L

- e &> , - (2.1)
P (g,”n) — 0, j(g);_, 0; for E,,,"q'!—>oo i



Differentiating the second condition (2.1) with respect to &, we /56
exclude f" from the condition for n = 0, and we obtain the boundary
condition for ¢ in the form

Gom oB0 Yol = 0 for nlo  (2.2)
Wm0 for toh g for g
' 1 Pt

The uniform linear boundary value problem (2.2) contains the second
derivative Pen in the boundary condition, and does not pertain to a number
of boundary value problem types which have been studied. As will be shown,
this problem has a one parametric set of solutions, and a single solution
is obtained by the condition £'(0) = €.

Let us introduce the complex variable z = E+in and the complex poten-
tial w ='¢+iy, where ¢ is the harmonic function conjugate to ¢. Without
loss of generality, we can assume that § = 0 on the basis of (2.2) for
£ = 0. Therefore, the analytical function w(z) can be continued by
symmetry in the entire lower half-plane n<0. As follows from (2.2), on

the real axis we obtain (dashed line designates derivative with respect to

z)
Re (" — ¢y 2%’ + *fozw) = 0 for y=o, (2.3)
Let us make the single assumption that w strives to 0 as the dipole
potential for z > », i.e., w = 0(z~!), w' = 0(z72), w" = 0(z~3) for z + .

This assumption is substantiated by the fact that a single solution which
has such an asymptotic behavior for z + « will be formulated below.
The function under the sign Re in (2.3) is analytic for n < 0, and -

in view of the given assumption - is bounded at infinity. From (2.3) we



then have

W — 4/922L‘l)’ 4 .2/9 w = i( (2.4)

Here C is still an arbitrary real constant.

Thus, the boundary value problem (2.1) can be reduced to determining
a solution of the ordinary linear differential equation (2.4) for the given
asymptotic behavior w = 0(z~!) at infinity.

When the function w(z) = ¢+iy is found, the form of the free surface
f(&) can be determined from the second condition (2.1), which represents a
linear equation of the first order for f. Taking ¢ = 'wg into account,

we can write a solution of this equation which satisfies the condition

f(~) = 0:
ey 3 %@ 0)
&) = 2§ o (2.5)
Let us differentiate (2.5) and equate £'(0) = ¢
ey 30 @0 G0 3% b E O (s 0)
”E)_'Tﬁ:g a7 g ‘=’é'S e dz
i 1 ' | 3 L i
| 3 i (0,0) — ¥ (2 0) AR
(e —de=d o

The integrai (2.6)1con§erges for x - - in view of the asymptotic /57
behavior w = 0(z~!) and bg = 0(£2). From the condition of symmetry
y(0,n) = 0, it follows that Y(&,0) is odd, and wE(E,O) is an even function
of £. This means that Wg(O,O)'Wg(X,O) = 0(x2) for x ~ 0, and the integral
(2.6) converges for x = 0. The condition (2.6) can be used to determine
the constant C from (2.4), which enters into w with a multiplier. It can
be readily shown that for f(£) the condition expressing conservation of

the liquid mass can be fulfilled from (2.5):

P
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3. The particular solution w® of the non-homogeneous equation (2.4)

and the linearly-independent, special solutions w!, w2 of the correspondin
y p g

(2.4) homogeneous equation can be written in the following form:

<

t
f

: i 00 .
: C
wo = c 2 a;z34+2, w, =4 ) a7, 'w2 =] E ay; 23""‘ :
k=0 ‘ P k=p !]l—ro ' ‘

{
!

Substituting each of these series in the equation and setting the

coefficients equal for powers of z, we obtain the recurrent relationships

(the coefficients agp', ag" are arbitrary):
y

an = L "’kvz 2(—i) (2k—1) i:i=2(—fi)f(2k—v/,)
0T 4y B@KFDEEE2) " g7 “’ﬂm
- N (2 - * L i
G 2(—~1) 2k —3/y) _ ]
., T 733k (3k+1) (k=1,2,..1) |

{
Co

As can be readily shown, this equation can be satisfied by assuming
that

B o oL GO0 1 Tc S S P C Y. i e S/
*=TEEF e = B! ]
N

U A @+ 107
b k=04, 2,00 , ,
Consequently, the desired functions wgy, w;, w, and the general solu-

tion w of equation (2.4) equal

- |
— el S =T (%»—1/,)

wy = C Z ((3’:)+(2;) P2,y = 2 ‘f—————(3k), :

| r’ 3.1

_ S eatrekay
_‘Eo (3k O 2341, = wo + Clwy + Cawj




The sgseries 1in (3.1) converge for all z s, i.e., w is an integral

function.
Since the desired, particular solution satisfies the condition Imw = 0
for z = in, the arbitrary constants C;, C, - as well as C - must be real.

In order to determine them, by first substituting the variables

'T=L‘/,7iza; -iarg'r{!—-:?}érgz;%—“/,ni (3.2)
i - ! ‘ ' ! |
we reduce equation (2.4) to a non-homogeneous confluent hypergeometric 58
equation
dw: (2 | \dw w ol
T‘(‘i?z‘-q-‘(‘é'—*-’f)g_? _B—=_.2'/JT'/:: (3.3)

We can use the confluent, hypergeometric functions (Ref. 2, 3)

D = @ (— 1Y Yy 1), Yo ‘(_ Ve, ¥, 7) (3.4)

as the linearly-independent particular solutions of the homogeneous equa-
tion corresponding to (3.3).

The Wronskian of the solution of (3.4) equals (Ref. 2)

W= 0¥, — Yo, = — I (¥ /T (= Y] ' v -3

We can write the solution of the non-homogeneous equation (3.3) by the

method of variation of arbitrary constants, assuming that

. l's

=u(D+vW,‘ wT'zu(DT’+U‘¥’,' (3.6)

As is customary in the method of variation of constents, for the
function u,v we obtain the equation

du cY

fhid . S » GE S ) | A

d Sy~ TP
dU‘_g e _ CF (_ 1/6) 3
=P D=naran G.7



Formula (3.5) is employed to derive the relationship (3.7).

In view of (3.2), we have the following in the region of flow

ES0, <0 —n<argz <0 0Larg TL Yy
. ‘ i j i V
Let us find the asymptotic behavior of the solution w for T + « in
the sector 0 < arg T < 1/2n. The following asymptotic formulas (Ref. 2)

are valid in the given sector:

©~ [T (/T (= V) e | ¥l (3.8)
: ‘ f oo

Let us substitute (3.8) in (3.7), and let us determine u,v - carrying
out integration asymptotically. Then let us substitute u,v in expression
(3.6) for w. We obtain

’ » LapT ) |,
u~ u (00) + De~" 1™, v~v(oo)—i—I%:£%jt'/’

T ¢y

‘ v (3.9)
w—g—z‘D mr“/-+ u (00) © -+ v(oo)‘¥’+(‘?(1"/')

In order that w have a given asymptotic behavior w = O(Z—l)=0(T_I/3) for
T > », it is necessary to equate the constants u(») = v(») = 0 to zero.
Then, taking into account the value of (3.7) by the constant D and the

relationship (3.2), from (3.9) we find the asmyptotic behavior

w»‘fv(3iC)/(2z)f for z—» o0 (3.10)

t I

The asymptotic behavior (3.10) is valid in the remaining portion of
the flow region, which can be examined in a similar manner.

We obtained the following for the functions u,v from (3.7):

g0 s : o oo by
u (1) =}—-DSe_“' T, v(7) #DS&“]t”j'/‘(Ddrz
. ! . , : °°' .

©o



Thé integration paths in (3.11) are initiated for t - o, [argrl < 1/211.

The desired solution w can be determined unambiguously by the formulas
(3.6), (3.4), (3.11). Substituting the known (Ref. 2) series expansions /59
of the confluent hypergeometric functions (3.4) in powers of 7 in formulas

(3.11) and (3.6), we can determine the expansion of the function w for small

T

‘ 3or V) . ‘
[“‘°)+”‘O) mh”(‘))r( e ‘+ zr<( 1/;) v O@m
!

In view of (3.11), the constants u(0), v(0) represent definite integrals
along the real semi-axis (from 0 to «). These integrals are calculated on
the basis of formulas given on pages 269-270 of the book (Ref. 2), or on
page 874 of the book (Ref. 3). After simple transformations utilizing
functional relationships for the gamma—function and the relationship (3.2),
we finally obtain

w =3, OF (= /) + Yy iCT (f5) 24 ¥, C2* + 0 (9

Comparing this eipansion with formulas (3.1), we can find the constants:

c; =1/,0¢, ¢, = -1/,c.

In view of (3.1), the desired solution of equation (2.4) is

c < | kI‘(Zk—‘/a) .;I‘(2k+1/3) g 22k 3.12
w@ =7 2 {9 HL @ar T eEE O @R 42]} 1)

k=0

The asymptotic behavior of the solution for (3.12) for z > = is
determined by the formula (3.10). Employing the asymptotic series for the

confluent hypergeometric function (Ref. 2), we can readily determine the

10



asymptotic series for w. Let us present the final result which - just as

formulas (3.1) - can be verified by direct substitution in equation
(2.4):

(@) HE S _C OO por (3.13)
T g e K

Thus, the desired solution of equation (2.4) with the required asymp-
totic behavior can be determined in the form of a series (3.12), which
converges for all finite z, in the form of an asymptotic series (3.13),
and can also be determined by formulas (3.6), (3.11) by means of the con-
fluent hypergeometric functions (3.4).

4., 1In order to make a definitive determination of the flow and form
of a free surface, it is necessary to determine the constant C. First of

all, from formula (3.12) we have:
w0 =¢ (0, 0).= Y/ CT (_1/3) W (0) = iy ©,0) =Y, icT ¢ = (4.1)
' i { E ' ' . ‘

Let us introduce the additional function

1

3 {005 g0y b
P(E)———\ et 4.2)

0

i

Employing equation (4.1), we can rewrite (4.2) in the form

‘ | j | ‘ z, 0
P <§) P (oo) 2L %S L ,)‘, “-3
: ! | i

For the function wg(g,O) = Im w'(£), we can readily obtain both the

convergent and the asymptotic series from formulas (3.12) and (3.13). /60

11



Substituting the first of these series in (4.2), and the second - in
(4.3), we can determine the convergent and asymptotic (for £ - «) series

for P:

o ._3‘“ D@k
£ @ =7 go {(“‘ “kapm [(6k+ ) (6/:-: o+

2(41:—1—2)' g2 r(4k+lf/)§‘
+(61~ T T 6F F 2 <6k43+ G)l]}

(4.4)

1/3> i (— (6k+1)x

3
PE)y~PrP (00) -7 2%+ 1 (4k+ 1)1 £65+3 =
3 )

. : /
=P o) = 4§ Dm0 € o)
Comparing formulas (2.5), (2.6) and (4.2), (4.3), we can express

the constant C and the form of the free surface f(£) by the function

P(&)

e 3T (Y P @
C=Pla f(§)—9{“4p(o:)+§[;1’—P(w)]} (4.9

The determination of the constant C, which is included with the mul-
tiplier in formulas (3.12), (3.13) for w, as well as the determination of
the function f(£), can be reduced (as can be seen from [4.5]) to calculating
the function P(£) and, in particular, P(«). The series (4.4) can be
utilized for this purpose.

Another method employed in this work is as follows. Let us examine
equation (2.4) on the real axis, assuming z = £, w = ¢+iy = C(y; + iyp) in
it. By separating the real and imaginary parts in (2.4), we can obtain a

system of two equations of the second order for the functions y;(§), y»(&)
n= (‘(?) B’ — (%) By + 1, =) B — (V) B

12



This system was integrated numerically on a EVM (computer) from

£ =0 to £ = 20 for the initial data which were obtained from (3.12)
=YHT(=Y), ' =%=0 v/ =T ) for =0
. i ! .
The function P(£) was determined by means of y, by quadrature of

(4.2)

g p g Vi | sl

?3 r —_— ’ "—— " :
P(§)=—2—& v’ ©) W@ %S de:g (4.6)
°© T d

The indeterminate form of the integrand in (4.6) can be readily ex-

panded for x = 0, and for small £ we have the following from (4.4)

PE="%TC)E+0®)

Determination of P(g) was controlled by calculating the convergent
series (4.4).

The value of P(») was calculated by P(§) for £ = 15220, utilizing the
latter from formula (4.4). The function f(&) was determined by means of
P(&) according to formula (4.5).

Let us present some computational results, in which (2.1), (4.1),
(4.5) were also used:

I P09 =235, C=e/P (oo)=0.424e |
1(0) = —¥,eT (/) / P (o9) = —0.8527¢, ' (0) = ¢
17 Q) =3/3¢ (0, 0) = /s €T (=) / P (00) = ~0.2874e -
V=|w(0)]|=1,el 0(3) / P (00) = — sf (0) == 0.5685 &

Here, V is the modulus of the dimensionless liquid velocity at /61
the origin (the velocity is directed along the n-axis). Figure 2 presents
a graph of the function e~1f(£) @©f the free liquid surface). The graph

clearly shows oscillations, whose frequency increases, and the amplitude

rapidly decreases with an increase in £. These oscillations correspond to



capillary waves which are propagated along the free liquid surface according

to a self-similar law. The shorter waves are propagated with a larger

! ; : : ! ; !

%‘ff(a)/f, : o ;

it ! ’.“\ . ‘
T

|
|
l
E / DN
i 7 S
/ R L
708 | o S

Figure 2

|
: ! :
o
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f

velocity, in accordance with the general characteristics of capillary waves
(Ref. 1). 1In the case of £ » 1, the function e !f(£) has asymptotic be-
havior, which follows from (4.4) and (4.5)

Q) ~ Y [P (o0) P17
and strives to zero, remaining positive.

Thus, the linearized self-similar problem has been completely solved

for o = l/zﬂ. We must remember that g = y—1/2n, and therefore € > 0 for a

non-wetting liquid and ¢ < 0 for a wetting liquid. The change to dimensional

variables is given by formulas (1.6) - for example, the rising of the liquid

and its velocity at the wall equal

O, = (9-;)/ 0= — 085 (r—Z) (2" : |
o 0D 2 (_pqt_)’/ /0= --0;.5685:,(7 _ 2) (%):’;' |

- 4, T3
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